Data classification using evidence reasoning rule
نویسندگان
چکیده
In Dempster–Shafer evidence theory (DST) based classifier design, Dempster’s combination (DC) rule is commonly used as a multi-attribute classifier to combine evidence collected from different attributes. The main aim of this paper is to present a classification method using a novel combination rule i.e., the evidence reasoning (ER) rule. As an improvement of the DC rule, the newly proposed ER rule defines the reliability and weight of evidence. The former indicates the ability of attribute or its evidence to provide correct assessment for classification problem, and the latter reflects the relative importance of evidence in comparison with other evidence when they need to be combined. The ER rule-based classification procedure is expatiated from evidence acquisition and estimation of evidence reliability and weight to combination of evidence. It is a purely data-driven approach without making any assumptions about the relationships between attributes and class memberships, and the specific statistic distributions of attribute data. Experiential results on five popular benchmark databases taken from University of California Irvine (UCI) machine learning database show high classification accuracy that is competitive with other classical and mainstream classifiers. © 2016 Elsevier B.V. All rights reserved. w m a l w t t i t p s f t s l [ D c ( B o l
منابع مشابه
A Margin-based Model with a Fast Local Searchnewline for Rule Weighting and Reduction in Fuzzynewline Rule-based Classification Systems
Fuzzy Rule-Based Classification Systems (FRBCS) are highly investigated by researchers due to their noise-stability and interpretability. Unfortunately, generating a rule-base which is sufficiently both accurate and interpretable, is a hard process. Rule weighting is one of the approaches to improve the accuracy of a pre-generated rule-base without modifying the original rules. Most of the pro...
متن کاملUSING DISTRIBUTION OF DATA TO ENHANCE PERFORMANCE OF FUZZY CLASSIFICATION SYSTEMS
This paper considers the automatic design of fuzzy rule-basedclassification systems based on labeled data. The classification performance andinterpretability are of major importance in these systems. In this paper, weutilize the distribution of training patterns in decision subspace of each fuzzyrule to improve its initially assigned certainty grade (i.e. rule weight). Ourapproach uses a punish...
متن کاملPost-classification of Misclassified Pixels by Evidential Reasoning: a Gis Approach for Improving Classification Accuracy of Remote Sensing Data
This paper discusses an approach for extracting supporting evidence from multisource spatial data and by rule-based models to incorporate the evidence with pre-classified Landsat TM data for improving classification accuracy. The process was focused on the extracted "possibly misclassified pixels" (PMPs) only. Based on Dempster-Shafer's theory of evidence, the concepts of homogeneous, heterogen...
متن کاملS3PSO: Students’ Performance Prediction Based on Particle Swarm Optimization
Nowadays, new methods are required to take advantage of the rich and extensive gold mine of data given the vast content of data particularly created by educational systems. Data mining algorithms have been used in educational systems especially e-learning systems due to the broad usage of these systems. Providing a model to predict final student results in educational course is a reason for usi...
متن کاملA Fuzzy Classifier based on Product and Sum Aggregation Reasoning Rule
This paper proposes the algorithm ProSum to perform the supervised classification of the data. In the proposed algorithm data is fuzzified by using π–type membership function to give the feature belongingness of each pattern to each class. By using Product aggregation reasoning rule (PARR) and sum aggregation reasoning rule (SARR), the belongingness of each pattern to each class is determined. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Knowl.-Based Syst.
دوره 116 شماره
صفحات -
تاریخ انتشار 2017